Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.109
Filtrar
1.
Vet Res ; 54(1): 40, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138353

RESUMO

Cryptosporidiosis is one of the main causes of diarrhea in children and young livestock. The interaction of the parasite with the intestinal host cells has not been characterized thoroughly yet but may be affected by the nutritional demand of the parasite. Hence, we aimed to investigate the impact of C. parvum infection on glucose metabolism in neonatal calves. Therefore, N = 5 neonatal calves were infected with C. parvum on the first day of life, whereas a control group was not (N = 5). The calves were monitored clinically for one week, and glucose absorption, turnover and oxidation were assessed using stable isotope labelled glucose. The transepithelial transport of glucose was measured using the Ussing chamber technique. Glucose transporters were quantified on gene and protein expression level using RT-qPCR and Western blot in the jejunum epithelium and brush border membrane preparations. Plasma glucose concentration and oral glucose absorption were decreased despite an increased electrogenic phlorizin sensitive transepithelial transport of glucose in infected calves. No difference in the gene or protein abundance of glucose transporters, but an enrichment of glucose transporter 2 in the brush border was observed in the infected calves. Furthermore, the mRNA for enzymes of the glycolysis pathway was increased indicating enhanced glucose oxidation in the infected gut. In summary, C. parvum infection modulates intestinal epithelial glucose absorption and metabolism. We assume that the metabolic competition of the parasite for glucose causes the host cells to upregulate their uptake mechanisms and metabolic machinery to compensate for the energy losses.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Glucose , Mucosa Intestinal , Animais , Bovinos , Animais Recém-Nascidos/metabolismo , Animais Recém-Nascidos/parasitologia , Glicemia/metabolismo , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/parasitologia , Criptosporidiose/metabolismo , Criptosporidiose/parasitologia , Cryptosporidium parvum/metabolismo , Glucose/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Masculino
2.
J Virol ; 96(15): e0056122, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867561

RESUMO

Enterovirus A71 (EV-A71) is a human pathogen that causes hand, foot, and mouth disease, which can progress to severe neurological disease. EV-A71 infects humans via the human scavenger receptor B2 (hSCARB2). It can also infect neonatal mice experimentally. Wild-type (WT) EV-A71 strains replicate primarily in the muscle of neonatal mice; however, susceptibility lasts only for a week after birth. Mouse-adapted (MA) strains, which can be obtained by serial passages in neonatal mice, are capable of infecting both muscle and neurons of the central nervous system. It is not clear how the host range and tropism of EV-A71 are regulated and why neonatal mice lose their susceptibility during development. We hypothesized that EV-A71 infection in neonatal mice is mediated by mouse Scarb2 (mScarb2) protein. Rhabdomyosarcoma (RD) cells expressing mScarb2 were prepared. Both WT and MA strains infected mScarb2-expressing cells, but the infection efficiency of the WT strain was much lower than that of the MA strain. Infection by WT and MA strains in vivo was abolished completely in Scarb2-/- mice. Scarb2+/- mice, in which Scarb2 expression was approximately half of that in Scarb2+/+ mice, showed a milder pathology than Scarb2+/+ mice after infection with the WT strain. The Scarb2 expression level in muscle decreased with aging, which was consistent with the reduced susceptibility of aged mice to infection. These results indicated that EV-A71 infection is mediated by mScarb2 and that the severity of the disease, the spread of virus, and the susceptibility period are modulated by mScarb2 expression. IMPORTANCE EV-A71 infects humans naturally but can also infect neonatal mice. The tissue tropism and severity of EV-A71 disease are determined by several factors, among which the virus receptor is thought to be important. We show that EV-A71 can infect neonatal mice using mScarb2. However, the infection efficiency of WT strains via mScarb2 is so low that an elevated virus-receptor interaction associated with mouse adaptation mutation and decrease in mScarb2 expression level during development modulate the severity of the disease, the spread of virus, and the susceptibility period in the artificial neonatal mice model.


Assuntos
Antígenos CD36 , Enterovirus Humano A , Receptores Virais , Animais , Animais Recém-Nascidos/metabolismo , Animais Recém-Nascidos/virologia , Antígenos CD36/biossíntese , Antígenos CD36/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Enterovirus Humano A/metabolismo , Enterovirus Humano A/patogenicidade , Doença de Mão, Pé e Boca/metabolismo , Doença de Mão, Pé e Boca/transmissão , Doença de Mão, Pé e Boca/virologia , Especificidade de Hospedeiro , Humanos , /metabolismo , Camundongos , Receptores Virais/biossíntese , Receptores Virais/metabolismo , Tropismo Viral , Virulência
3.
Front Immunol ; 13: 792716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173718

RESUMO

Prematurity and bronchopulmonary dysplasia (BPD) increase the risk of asthma later in life. Supplemental oxygen therapy is a risk factor for chronic respiratory symptoms in infants with BPD. Hyperoxia induces cell injury and release of damage-associated molecular patterns (DAMPs). Cytoskeletal filamentous actin (F-actin) is a DAMP which binds Clec9a, a C-type lectin selectively expressed on CD103+ dendritic cells (DCs). Co-stimulation of Clec9a and TLR3 induces maximal proinflammatory responses. We have shown that neonatal hyperoxia (a model of BPD) increases lung IL-12+Clec9a+CD103+ DCs, pro-inflammatory responses and airway hyperreactivity following rhinovirus (RV) infection. CD103+ DCs and Clec9a are required for these responses. Hyperoxia increases F-actin levels in bronchoalveolar lavage fluid (BALF). We hypothesized that the F-actin severing protein gelsolin attenuates neonatal hyperoxia-induced Clec9a+CD103+ DC-dependent pro-inflammatory responses to RV and preserves alveolarization. We exposed neonatal mice to hyperoxia and treated them with gelsolin intranasally. Subsequently we inoculated the mice with RV intranasally. Alternatively, we inoculated normoxic neonatal mice with BALF from hyperoxia-exposed mice (hyperoxic BALF), RV and gelsolin. We analyzed lung gene expression two days after RV infection. For in vitro studies, lung CD11c+ cells were isolated from C57BL/6J or Clec9agfp-/- mice and incubated with hyperoxic BALF and RV. Cells were analyzed by flow cytometry. In neonatal mice, gelsolin blocked hyperoxia-induced Il12p40, TNF-α and IFN-γ mRNA and protein expression in response to RV infection. Similar effects were observed when gelsolin was co-administered with hyperoxic BALF and RV. Gelsolin decreased F-actin levels in hyperoxic BALF in vitro and inhibited hyperoxia-induced D103lo DC expansion and inflammation in vivo. Gelsolin also attenuated hyperoxia-induced hypoalveolarization. Further, incubation of lung CD11c+ cells from WT and Clec9agfp-/- mice with hyperoxic BALF and RV, showed Clec9a is required for maximal hyperoxic BALF and RV induced IL-12 expression in CD103+ DCs. Finally, in tracheal aspirates from mechanically ventilated human preterm infants the F-actin to gelsolin ratio positively correlates with FiO2, and gelsolin levels decrease during the first two weeks of mechanical ventilation. Collectively, our findings demonstrate a promising role for gelsolin, administered by inhalation into the airway to treat RV-induced exacerbations of BPD and prevent chronic lung disease.


Assuntos
Displasia Broncopulmonar/tratamento farmacológico , Gelsolina/administração & dosagem , Hiperóxia/fisiopatologia , Lectinas Tipo C/metabolismo , Infecções por Picornaviridae/tratamento farmacológico , Receptores Imunológicos/metabolismo , Administração por Inalação , Animais , Animais Recém-Nascidos/metabolismo , Antígenos CD/metabolismo , Displasia Broncopulmonar/virologia , Feminino , Humanos , Recém-Nascido , Cadeias alfa de Integrinas/metabolismo , Interleucina-12/metabolismo , Lectinas Tipo C/genética , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigenoterapia/efeitos adversos , Infecções por Picornaviridae/virologia , Receptores Imunológicos/genética , Testes de Função Respiratória , Rhinovirus/isolamento & purificação
4.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216239

RESUMO

The functional maturation of insulin-secreting ß-cells is initiated before birth and is completed in early postnatal life. This process has a critical impact on the acquisition of an adequate functional ß-cell mass and on the capacity to meet and adapt to insulin needs later in life. Many cellular pathways playing a role in postnatal ß-cell development have already been identified. However, single-cell transcriptomic and proteomic analyses continue to reveal new players contributing to the acquisition of ß-cell identity. In this review, we provide an updated picture of the mechanisms governing postnatal ß-cell mass expansion and the transition of insulin-secreting cells from an immature to a mature state. We then highlight the contribution of the environment to ß-cell maturation and discuss the adverse impact of an in utero and neonatal environment characterized by calorie and fat overload or by protein deficiency and undernutrition. Inappropriate nutrition early in life constitutes a risk factor for developing diabetes in adulthood and can affect the ß-cells of the offspring over two generations. A better understanding of these events occurring in the neonatal period will help developing better strategies to produce functional ß-cells and to design novel therapeutic approaches for the prevention and treatment of diabetes.


Assuntos
Animais Recém-Nascidos/fisiologia , Células Secretoras de Insulina/fisiologia , Estado Nutricional/fisiologia , Animais , Animais Recém-Nascidos/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Humanos , Recém-Nascido , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
5.
Sci Rep ; 12(1): 3186, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210456

RESUMO

Sexual differentiation of the brain is influenced by testosterone and its metabolites during the perinatal period, when many aspects of brain development, including the maturation of GABAergic transmission, occur. Whether and how testosterone signaling during the perinatal period affects GABAergic transmission is unclear. Here, we analyzed GABAergic circuit functional markers in male, female, testosterone-treated female, and testosterone-insensitive male rats after the first postnatal week and in young adults. In the hippocampus, mRNA levels of proteins associated with GABA signaling were not significantly affected at postnatal day (P) 7 or P40. Conversely, membrane protein levels of KCC2, which are critical for determining inhibition strength, were significantly higher in females compared to males and testosterone-treated females at P7. Further, female and testosterone-insensitive male rats at P7 showed higher levels of the neurotrophin BDNF, which is a powerful regulator of neuronal function, including GABAergic transmission. Finally, spontaneous GABAergic currents in hippocampal CA1 pyramidal cells were more frequent in females and testosterone-insensitive males at P40. Overall, these results show that perinatal testosterone levels modulate GABAergic circuit function, suggesting a critical role of perinatal sex hormones in regulating network excitability in the adult hippocampus.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Simportadores/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Testosterona/farmacologia , Síndrome de Resistência a Andrógenos/genética , Animais , Animais Recém-Nascidos/metabolismo , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Mutação , Neurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo , Caracteres Sexuais
6.
PLoS One ; 17(1): e0262584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030228

RESUMO

The equine neonate is considered to have impaired glucose tolerance due to delayed maturation of the pancreatic endocrine system. Few studies have investigated insulin sensitivity in newborn foals using dynamic testing methods. The objective of this study was to assess insulin sensitivity by comparing the insulin-modified frequently sampled intravenous glucose tolerance test (I-FSIGTT) between neonatal foals and adult horses. This study was performed on healthy neonatal foals (n = 12), 24 to 60 hours of age, and horses (n = 8), 3 to 14 years of age using dextrose (300 mg/kg IV) and insulin (0.02 IU/kg IV). Insulin sensitivity (SI), acute insulin response to glucose (AIRg), glucose effectiveness (Sg), and disposition index (DI) were calculated using minimal model analysis. Proxy measurements were calculated using fasting insulin and glucose concentrations. Nonparametric statistical methods were used for analysis and reported as median and interquartile range (IQR). SI was significantly higher in foals (18.3 L·min-1· µIU-1 [13.4-28.4]) compared to horses (0.9 L·min-1· µIU-1 [0.5-1.1]); (p < 0.0001). DI was higher in foals (12 × 103 [8 × 103-14 × 103]) compared to horses (4 × 102 [2 × 102-7 × 102]); (p < 0.0001). AIRg and Sg were not different between foals and horses. The modified insulin to glucose ratio (MIRG) was lower in foals (1.72 µIUinsulin2/10·L·mgglucose [1.43-2.68]) compared to horses (3.91 µIU insulin2/10·L·mgglucose [2.57-7.89]); (p = 0.009). The homeostasis model assessment of beta cell function (HOMA-BC%) was higher in horses (78.4% [43-116]) compared to foals (23.2% [17.8-42.2]); (p = 0.0096). Our results suggest that healthy neonatal foals are insulin sensitive in the first days of life, which contradicts current literature regarding the equine neonate. Newborn foals may be more insulin sensitive immediately after birth as an evolutionary adaptation to conserve energy during the transition to extrauterine life.


Assuntos
Animais Recém-Nascidos/metabolismo , Cavalos/fisiologia , Resistência à Insulina/genética , Fatores Etários , Animais , Glicemia/análise , Feminino , Teste de Tolerância a Glucose/métodos , Teste de Tolerância a Glucose/veterinária , Cavalos/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/fisiologia , Masculino , Pâncreas/metabolismo
7.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864986

RESUMO

Glucocorticoids (GCs) are critical modulators of the immune system. The hypothalamic-pituitary-adrenal (HPA) axis regulates circulating GC levels and is stimulated by endotoxins. Lymphoid organs also produce GCs; however, it is not known how lymphoid GC levels are regulated in response to endotoxins. We assessed whether an acute challenge of lipopolysaccharide (LPS) increases lymphoid levels of progesterone and GCs, and expression of steroidogenic enzymes and key HPA axis components (eg, corticotropin-releasing hormone [CRH], adrenocorticotropic hormone [ACTH]). We administered LPS (50 µg/kg intraperitoneally) or vehicle control to male and female C57BL/6J neonatal (postnatal day [PND] 5) and adult (PND90) mice and collected blood, bone marrow, thymus, and spleen 4 hours later. We measured progesterone, 11-deoxycorticosterone, corticosterone, and 11-dehydrocorticosterone via liquid chromatography-tandem mass spectrometry. We measured gene expression of key steroidogenic enzymes (Cyp11b1, Hsd11b1, and Hsd11b2) and HPA axis components (Crh, Crhr1, Pomc, and Mc2r) via quantitative polymerase chain reaction. At PND5, LPS induced greater increases in steroid levels in lymphoid organs than in blood. In contrast, at PND90, LPS induced greater increases in steroid levels in blood than in lymphoid organs. Steroidogenic enzyme transcripts were present in all lymphoid organs, and LPS altered steroidogenic enzyme expression predominantly in the spleen. Lastly, we detected transcripts of key HPA axis components in all lymphoid organs, and there was an effect of LPS in the spleen. Taken together, these data suggest that LPS regulates GC production by lymphoid organs, similar to its effects on the adrenal glands, and the effects of LPS might be mediated by local expression of CRH and ACTH.


Assuntos
Medula Óssea/metabolismo , Glucocorticoides/biossíntese , Lipopolissacarídeos/farmacologia , Baço/metabolismo , Timo/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Animais , Animais Recém-Nascidos/metabolismo , Medula Óssea/efeitos dos fármacos , Medula Óssea/enzimologia , Corticosterona/análise , Corticosterona/sangue , Feminino , Glucocorticoides/sangue , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , RNA Mensageiro/análise , Receptores de Hormônio Liberador da Corticotropina/genética , Baço/efeitos dos fármacos , Baço/enzimologia , Esteroide 11-beta-Hidroxilase/genética , Timo/efeitos dos fármacos , Timo/enzimologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-34896909

RESUMO

INTRODUCTION: Perinatal women often experience mood disorders and postpartum depression due to the physical load and the rapid changes in hormone levels caused by pregnancy, childbirth, and nursing. When the mother's emotions become unstable, their parental behavior (maternal behavior) may decline, the child's attachment may weaken, and the formation of mother-child bonding can become hindered. As a result, the growth of the child may be adversely affected. The objective of this study was to investigate the effect of ω3 fatty acid deficiency in the perinatal period on maternal behavior and the oxytocin concentration and fatty acid composition in brain tissue. MATERIALS AND METHODS: Virgin female C57BL/6 J mice fed a ω3 fatty acid-deficient (ω3-Def) or adequate (ω3-Adq) diet were mated for use in this study. To assess maternal behavior, nest shape was evaluated at a fixed time from gestational day (GD) 15 to postpartum day (PD) 13, and a retrieval test was conducted on PD 3. For neurochemical measurement, brains were removed from PD 1-6 dams and hippocampal fatty acids and hypothalamic oxytocin concentrations were assessed. RESULTS: Peripartum nest shape scores were similar to those reported previously (Harauma et al., 2016); nests in the ω3-Def group were small and of poor quality whereas those in the ω3-Adq group were large and elaborate. The inferiority of nest shape in the ω3-Def group continued from PD 0-7. In the retrieval test performed on PD 3, dams in the ω3-Def group took longer on several parameters compared with those in the ω3-Adq group, including time to make contact with pups (sniffing time), time to start retrieving the next pup (interval time), and time to retrieve the last pup to the nest (grouping time). Hypothalamic oxytocin concentrations on PD 1-6 were lower in the ω3-Def group than in the ω3-Adq group. DISCUSSION: Our data show that ω3 fatty acid deficiency reduces maternal behavior, a state that continued during pup rearing. This was supported by the observed decrease in hypothalamic oxytocin concentration in the ω3-Def group. These results suggest that ω3 fatty acid supplementation during the perinatal period is not only effective in delivering ω3 fatty acids to infants but is also necessary to activate high-quality parental behavior in mothers.


Assuntos
Dieta/métodos , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Comportamento Materno/efeitos dos fármacos , Ocitocina/biossíntese , Núcleo Hipotalâmico Paraventricular/metabolismo , Parto/metabolismo , Período Pós-Parto/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos/metabolismo , Feminino , Idade Gestacional , Hipocampo/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Parto/efeitos dos fármacos , Período Pós-Parto/efeitos dos fármacos , Gravidez
9.
Nutrients ; 13(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34836384

RESUMO

Several studies suggest that the maternal protein content and source can affect the offspring's health. However, the chronic impact of maternal quality and quantity protein restriction, and reversible changes upon rehabilitation, if any, in the offspring, remains elusive. This study examined the effects of maternal low-quality protein (LQP) and low-protein (LP) intake from preconception to post-weaning, followed by rehabilitation from weaning, on body composition, glucose-homeostasis, and metabolic factors in rat offspring. Wistar rats were exposed to normal protein (NP; 20% casein), LQP (20% wheat gluten) or LP (8% casein) isocaloric diets for 7 weeks before pregnancy until lactation. After weaning, the offspring were exposed to five diets: NP, LQP, LQPR (LQP rehabilitated with NP), LP, and LPR (LP rehabilitated with NP) for 16 weeks. Body composition, glucose-homeostasis, lipids, and plasma hormones were investigated. The LQP and LP offspring had lower bodyweight, fat and lean mass, insulin and HOMA-IR than the NP. The LQP offspring had higher cholesterol, T3 and T4, and lower triacylglycerides and glucose, while these were unaltered in LP compared to NP. The majority of the above outcomes were reversed upon rehabilitation. These results suggest that the chronic exposure of rats to maternal LQP and LP diets induced differential adverse effects by influencing body composition and metabolism, which were reversed upon rehabilitation.


Assuntos
Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Dieta com Restrição de Proteínas/efeitos adversos , Proteínas na Dieta/administração & dosagem , Homeostase/efeitos dos fármacos , Animais , Animais Recém-Nascidos/metabolismo , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição Materna/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar
10.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638634

RESUMO

The hyperfiltration theory has been used to explain the mechanism of low birth weight (LBW)-related nephropathy. However, the molecular changes in the kidney proteome have not been defined in this disease, and early biomarkers are lacking. We investigated the molecular pathogenesis of LBW rats obtained by intraperitoneal injection of dexamethasone into pregnant animals. Normal-birth-weight (NBW) rats were used as controls. When the rats were four weeks old, the left kidneys were removed and used for comprehensive label-free proteomic studies. Following uninephrectomy, all rats were fed a high-salt diet until 9 weeks of age. Differences in the molecular composition of the kidney cortex were observed at the early step of LBW nephropathy pathogenesis. Untargeted quantitative proteomics showed that proteins involved in energy metabolism, such as oxidative phosphorylation (OXPHOS), the TCA cycle, and glycolysis, were specifically downregulated in the kidneys of LBW rats at four weeks. No pathological changes were detected at this early stage. Pathway analysis identified NEFL2 (NRF2) and RICTOR as potential upstream regulators. The search for biomarkers identified components of the mitochondrial respiratory chain, namely, ubiquinol-cytochrome c reductase complex subunits (UQCR7/11) and ATP5I/L, two components of mitochondrial F1FO-ATP synthase. These findings were further validated by immunohistology. At later stages of the disease process, the right kidneys revealed an increased frequency of focal segmental glomerulosclerosis lesions, interstitial fibrosis and tubular atrophy. Our findings revealed proteome changes in LBW rat kidneys and revealed a strong downregulation of specific mitochondrial respiratory chain proteins, such as UQCR7.


Assuntos
Recém-Nascido de Baixo Peso/metabolismo , Nefropatias/metabolismo , Proteoma/metabolismo , Animais , Animais Recém-Nascidos/metabolismo , Biomarcadores/metabolismo , Peso ao Nascer/fisiologia , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Rim/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação Oxidativa , Gravidez , Proteômica/métodos , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Ratos
11.
J Interferon Cytokine Res ; 41(9): 319-328, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543127

RESUMO

Although high-mobility group box-1 (HMGB1) is related to the persistent intestinal inflammation in the development of necrotizing enterocolitis (NEC), the role of HMGB1 in the regulation of the intestinal microcirculation in NEC is not well understood. Therefore, we investigated the mechanism(s) by which HMGB1 regulates the generation of the following vasodilatory signals during the development of NEC: endothelial nitric oxide synthase (eNOS) and nitric oxide (NO). Experimental NEC was induced in full-term C57BL/6 mouse pups through the formula gavage and hypoxia technique. The blockade of HMGB1 was achieved with a subcutaneous injection of anti-HMGB1 antibody. Intestinal tissues and blood samples were collected at predetermined time points for the assessment of intestinal microcirculation, lipid peroxidation levels, and evaluation of eNOS activation. We found elevations in HMGB1 expression as early as 12 h after induction of NEC stress, which preceded intestinal injury. Treatment of mouse pups with HMGB1 neutralizing antibody attenuated the intestinal microvascular features and symptoms of NEC, but this improvement was not found in the eNOS knockout mice, suggesting that HMGB1 inhibition increased intestinal microcirculatory perfusion in an eNOS-dependent manner. Moreover, HMGB1 inhibition rescued NO production and eliminated O2•- production in experimental NEC mice through eNOS activation. These data indicate that excessive HMGB1 signaling is associated with the pathogenesis of NEC, suggesting that HMGB1 inhibition might be a promising strategy for NEC treatment.


Assuntos
Enterocolite Necrosante/metabolismo , Proteína HMGB1/metabolismo , Mucosa Intestinal/metabolismo , Animais , Animais Recém-Nascidos/metabolismo , Modelos Animais de Doenças , Peroxidação de Lipídeos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação/fisiologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/fisiologia
12.
Nutrients ; 13(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34579160

RESUMO

Protein imbalance during pregnancy affects women in underdeveloped and developing countries and is associated with compromised offspring growth and an increased risk of metabolic diseases in later life. We studied in a porcine model the glucose and urea metabolism, and circulatory hormone and metabolite profile of offspring exposed during gestation, to maternal isoenergetic low-high (LP-HC), high-low (HP-LC) or adequate (AP) protein-carbohydrate ratio diets. At birth, LP-HC were lighter and the plasma acetylcarnitine to free carnitine ratios at 1 day of life was lower compared to AP offspring. Plasma urea concentrations were lower in 1 day old LP-HC offspring than HP-LC. In the juvenile period, increased insulin concentrations were observed in LP-HC and HP-LC offspring compared to AP, as was body weight from HP-LC compared to LP-HC. Plasma triglyceride concentrations were lower in 80 than 1 day old HP-LC offspring, and glucagon concentrations lower in 80 than 1 day old AP and HP-LC offspring. Plasma urea and the ratio of glucagon to insulin were lower in all 80 than 1 day old offspring. Aminoacyl-tRNA, arginine and phenylalanine, tyrosine and tryptophan metabolism, histidine and beta-alanine metabolism differed between 1 and 80 day old AP and HP-LC offspring. Maternal protein imbalance throughout pregnancy did not result in significant consequences in offspring metabolism compared to AP, indicating enormous plasticity by the placenta and developing offspring.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Proteínas na Dieta/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna , Metaboloma , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Acetilcarnitina/sangue , Animais , Animais Recém-Nascidos/metabolismo , Carnitina/sangue , Carboidratos da Dieta/administração & dosagem , Feminino , Glucose/metabolismo , Teste de Tolerância a Glucose , Masculino , Gravidez , Deficiência de Proteína/metabolismo , Suínos/crescimento & desenvolvimento , Suínos/metabolismo , Triglicerídeos/sangue , Ureia/sangue , Ureia/metabolismo
13.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360870

RESUMO

BACKGROUND: Metformin is commonly used to treat gestational diabetes mellitus. This study investigated the effect of maternal metformin intervention during obese glucose-intolerant pregnancy on the gonadal white adipose tissue (WAT) of 8-week-old male and female mouse offspring. METHODS: C57BL/6J female mice were provided with a control (Con) or obesogenic diet (Ob) to induce pre-conception obesity. Half the obese dams were treated orally with 300 mg/kg/d of metformin (Ob-Met) during pregnancy. Gonadal WAT depots from 8-week-old offspring were investigated for adipocyte size, macrophage infiltration and mRNA expression of pro-inflammatory genes using RT-PCR. RESULTS: Gestational metformin attenuated the adiposity in obese dams and increased the gestation length without correcting the offspring in utero growth restriction and catch-up growth caused by maternal obesity. Despite similar body weight, the Ob and Ob-Met offspring of both sexes showed adipocyte hypertrophy in young adulthood. Male Ob-Met offspring had increased WAT depot weight (p < 0.05), exaggerated adipocyte hyperplasia (p < 0.05 vs. Con and Ob offspring), increased macrophage infiltration measured via histology (p < 0.05) and the mRNA expression of F4/80 (p < 0.05). These changes were not observed in female Ob-Met offspring. CONCLUSIONS: Maternal metformin intervention during obese pregnancy causes excessive adiposity, adipocyte hyperplasia and WAT inflammation in male offspring, highlighting sex-specific effects of prenatal metformin exposure on offspring WAT.


Assuntos
Animais Recém-Nascidos/metabolismo , Diabetes Gestacional , Metformina/farmacologia , Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Adiposidade , Animais , Diabetes Gestacional/tratamento farmacológico , Diabetes Gestacional/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade Materna/tratamento farmacológico , Obesidade Materna/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Fatores Sexuais
14.
Physiol Rep ; 9(13): e14946, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228894

RESUMO

Serotonin (5-HT) influences brain development and has predominantly excitatory neuromodulatory effects on the neural respiratory control circuitry. Infants that succumb to sudden infant death syndrome (SIDS) have reduced brainstem 5-HT levels and Tryptophan hydroxylase 2 (Tph2). Furthermore, there are age- and sex-dependent risk factors associated with SIDS. Here we utilized our established Dark Agouti transgenic rat lacking central serotonin KO to test the hypotheses that CNS 5-HT deficiency leads to: (1) high mortality in a sex-independent manner, (2) age-dependent alterations in other CNS aminergic systems, and (3) age-dependent impairment of chemoreflexes during post-natal development. KO rat pups showed high neonatal mortality but not in a sex-dependent manner and did not show altered hypoxic or hypercapnic ventilatory chemoreflexes. However, KO rat pups had increased apnea-related metrics during a specific developmental age (P12-16), which were preceded by transient increases in dopaminergic system activity (P7-8). These results support and extend the concept that 5-HT per se is a critical factor in supporting respiratory control during post-natal development.


Assuntos
Animais Recém-Nascidos/fisiologia , Fenômenos Fisiológicos Respiratórios , Serotonina/deficiência , Fatores Etários , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/metabolismo , Temperatura Corporal , Tronco Encefálico/química , Feminino , Técnicas de Silenciamento de Genes , Hipercapnia/etiologia , Hipercapnia/fisiopatologia , Hipóxia/etiologia , Hipóxia/fisiopatologia , Masculino , Mortalidade , Ratos , Ratos Transgênicos , Serotonina/análise , Serotonina/fisiologia , Fatores Sexuais
15.
BMC Vet Res ; 17(1): 236, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225699

RESUMO

BACKGROUND: Respiratory diseases are a major cause of morbidity and mortality in the horses of all ages including foals. There is limited understanding of the expression of immune molecules such as tetraspanins and surfactant proteins (SP) and the regulation of the immune responses in the lungs of the foals. Therefore, the expression of CD9, SP-A and SP-D in foal lungs was examined. RESULTS: Lungs from one day old (n = 6) and 30 days old (n = 5) foals were examined for the expression of CD9, SP-A, and SP-D with immunohistology and Western blots. Western blot data showed significant increase in the amount of CD9 protein (p = 0.0397) but not of SP-A and SP-D at 30 days of age compared to one day. Immunohistology detected CD9 in the alveolar septa and vascular endothelium but not the bronchiolar epithelium in the lungs of the foals in both age groups. SP-A and SP-D expression was localized throughout the alveolar septa including type II alveolar epithelial cells and the vascular endothelium of the lungs in all the foals. Compared to one day old foals, the expression of SP-A and SP-D appeared to be increased in the bronchiolar epithelium of 30 day old foals. Pulmonary intravascular macrophages were also positive for SP-A and SP-D in 30 days old foals and these cells are not developed in the day old foals. CONCLUSIONS: This is the first data on the expression of CD9, SP-A and SP-D in the lungs of foals.


Assuntos
Pulmão/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Tetraspanina 29/metabolismo , Animais , Animais Recém-Nascidos/metabolismo , Cavalos/crescimento & desenvolvimento , Cavalos/imunologia , Pulmão/crescimento & desenvolvimento , Macrófagos Alveolares , Tensoativos
16.
Brain Res ; 1768: 147588, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34310937

RESUMO

Preterm infant brain injury is a leading cause of morbidity and disability in survivors of preterm infants. Unfortunately, the effective treatment remains absent. Recent evidence suggests that GSK-3ß inhibitor TWS119 has a neuroprotectiverole in adult brain injury by activation of Wnt/ß-catenin signaling pathway. However, the role on neonatal brain injury is not yet explored. The study aims to evaluate the effect of TWS119 at 7 d after hypoxic-ischemic brain damage and investigate the mechanism that it regulates Wnt and Notch signaling pathways at 24 h after hypoxic-ischemic brain damage in neonatal rats. Three-day-old rats were randomly divided into 3 groups: sham group, HI group and TWS119 group. The neonatal rats were subjected to left carotid artery ligation followed by 2 h of hypoxia (8.0% O2). A single dose of TWS119 (30 mg/kg) was intraperitoneally injected 20 min prior to hypoxia-ischemia (HI). At 7 d after HI, TWS119 improved the tissue structure, reduced cell apoptosis, up-regulated bcl-2 expression, up-regulated the expression of PSD-95 and Synapsin-1. At 24 h after HI, it activated Wnt/ß-catenin signaling pathway by up-regulation of ß-catenin protein expression and wnt3a/wnt5a/wnt7a mRNA expression. Simultaneously, it suppressed Notch signaling pathway by down-regulation of Notch1 and HES-1 proteins expression. Our study suggested that TWS119 performed a neuroprotective function at 7 d after hypoxic-ischemic brain damage via a crosstalk with Wnt/ß-catenin and Notch signaling pathways at 24 h after hypoxic-ischemic brain damage in neonatal rats.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Pirimidinas/farmacologia , Pirróis/farmacologia , Animais , Animais Recém-Nascidos/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Feminino , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley , Receptores Notch/efeitos dos fármacos , Receptores Notch/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia
17.
Food Funct ; 12(17): 8154-8168, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34291263

RESUMO

Our previous studies have revealed that a maternal diet rich in n-3 polyunsaturated fatty acids (PUFAs) is associated with decreased mammary cancer risk in offspring. However, the underlying mechanism remains unclear. The present study aimed to investigate the possible mechanism by which maternal n-3 PUFAs decrease the mammary cancer risk of offspring in terms of gut microbiota. C57BL/6 pregnant mice were fed a control standard chow (CON), fish oil supplemented diet (n-3 Sup-FO), flaxseed oil supplemented diet (n-3 Sup-FSO) or n-3 PUFA deficient diet (n-3 Def) (n = 10) throughout gestation and lactation. After weaning, all offspring were fed a AIN-93G diet. The tumor incidence and volume were significantly increased in n-3 Def offspring compared with the other groups. Maternal n-3 PUFA supplementation resulted in a significantly increased α-diversity of the gut microbiota in n-3 Sup-FO and n-3 Sup-FSO offspring compared with that in n-3 Def offspring. The relative abundances of Akkermansia, Lactobacillus and Mucispirillum observed in adult offspring of both the n-3 Sup-FO and n-3 Sup-FSO groups were higher than those observed in the control group, whereas the maternal n-3 Def diet was associated with decreased abundances of Lactobacillus, Bifidobacterium and Barnesiella in 7-week-old offspring. The levels of the pro-inflammatory factors IL-1ß, IL-6 and TNF-α were significantly lower in n-3 PUFA supplemented offspring than in n-3 Def offspring. In addition, the abundance of Mucispirillum was positively associated with the concentration of the anti-inflammatory factor IL-10, whereas the abundances of Bifidobacterium and Akkermansia were negatively associated with IL-1ß and IL-6, respectively. Based on the bacterial composition of the gut microbiota, metabolites were predicted and the results showed that arachidonic acid metabolism and the MAPK signaling pathways were more enriched, while the butyric acid metabolic pathway was less enriched in offspring of the n-3 Def group than in those of the other three groups. Our findings suggest that decreased pro-inflammatory factors and changed gut microbiota are associated with the protective effects of maternal n-3 PUFAs against offspring's mammary tumorigenesis.


Assuntos
Neoplasias da Mama/prevenção & controle , Ácidos Graxos Ômega-3/metabolismo , Microbioma Gastrointestinal , Fenômenos Fisiológicos da Nutrição Materna , Animais , Animais Recém-Nascidos/metabolismo , Animais Recém-Nascidos/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Neoplasias da Mama/microbiologia , Citocinas/metabolismo , Suscetibilidade a Doenças , Feminino , Óleos de Peixe/metabolismo , Óleo de Semente do Linho/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
18.
Cell Biol Int ; 45(11): 2264-2274, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34288236

RESUMO

The mammary gland (MG) and female prostate are plastic reproductive organs which are highly responsive to hormones. Thus, endocrine disruptors, such as bisphenol A (BPA) and exogenous estrogens, negatively affect glandular homeostasis. In addition to previously described alterations, changes in inflammatory markers expression also trigger the development of a microenvironment that contributes to tumor progression. The current work aimed to evaluate the inflammatory responses of the MG and prostate gland to BPA (50 µg/kg) and 17-ß estradiol (35 µg/kg) exposure during the perinatal window of susceptibility. The results showed that at 6 months of age there was an increase in the number of phospho-STAT3 (P-STAT3) positive cells in the female prostate from animals perinatally exposed to 50 µg/kg BPA daily. In addition, the number of macrophages increased in these animals in comparison with nonexposed animals, as shown by the F4/80 marker. Despite an increase in the incidence of lobuloalveolar and intraductal hyperplasia, the MG did not show any difference in the expression of the four inflammatory markers evaluated: tumor necrosis factor-α, COX-2, P-STAT3, and F4/80. Analysis of both glands from the same animal led to the conclusion that exposure to endocrine disruptors during the perinatal window of susceptibility leads to different inflammatory responses in different reproductive organs. As the prostate is more susceptible to these inflammatory mechanisms, it is reasonable to affirm that possible neoplastic alterations in this organ are related to changes in the inflammatory pattern of the stroma, a characteristic that is not evident in the MG.


Assuntos
Disruptores Endócrinos/farmacologia , Glândulas Endócrinas/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Animais , Animais Recém-Nascidos/metabolismo , Compostos Benzidrílicos/farmacologia , Disruptores Endócrinos/metabolismo , Glândulas Endócrinas/metabolismo , Estradiol/farmacologia , Feminino , Genitália Feminina/efeitos dos fármacos , Genitália Feminina/metabolismo , Gerbillinae , Humanos , Inflamação/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Fenóis/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Esteroides/farmacologia
19.
Sci Rep ; 11(1): 11420, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075131

RESUMO

Alteration of programming of the intestinal wall maturation may be responsible for non-communicable chronic diseases in adulthood. It may originate from prenatal exposure of mothers to deleterious environmental factors such as pesticides or western diet. This work was undertaken to determine whether disturbances of the digestive tract function and of innate immunity of offspring at adulthood could be due to maternal exposure to a pesticide, chlorpyrifos (CPF) and a High Fat Diet (HFD) starting 4 months before gestation and lasting until weaning of offspring. Fifty-one male Wistar rats coming from 4 groups of dams exposed to CPF, HFD, both and control were followed from birth to 8 weeks of age. They were fed standard chow and received no treatment. The maternal pesticide exposure slows down fetal and postnatal weight gain without histological injuries of the gut mucosa. CPF or HFD both induced modifications of tight junctions and mucins genes expressions without inducing an increase in epithelial permeability or an inflammatory state. Co-exposure to both CPF and HFD did not exacerbate the effects observed with each factor separately. Despite the lack of direct contact except through breast milk until weaning, CPF or HFD maternal exposure have demonstrated preliminary gut barrier impacts on offspring.


Assuntos
Animais Recém-Nascidos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fenômenos Fisiológicos da Nutrição Pré-Natal , Animais , Feminino , Masculino , Gravidez , Ratos , Ratos Wistar
20.
Brain Res ; 1767: 147538, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34052259

RESUMO

Abnormal brain-gut interactions contribute to the development of chronic visceral hypersensitivity (CVH), which is the pivotal feature of irritable bowel syndrome (IBS). Despite the consensus with respect to the vital role of hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) channels in promoting painful symptoms in the peripheral nervous system, we identified that the upregulation of HCN2 in supraoptic nucleus (SON) was involved in the modulation of CVH in rat model of neonatal colorectal distention (n-CRD). Specifically, colorectal distention (CRD) upregulated the expression of c-Fos in SON in adult CVH rats, indicating the involvement of SON sensitazation in visceral sensation. Moreover, the administration of ZD7288 (the pan-HCN channel inhibitor) rather than 8-Br-cAMP (the non-specific HCN channel agonist) aggravated the CVH symptoms and reduced the phosphorylation level of CaMKII-CREB cascade. Together, the findings indicated that the upregulation of supraoptic HCN2 contributed to the sensitization of SON, which had protective effects on the modulation of CVH with the involvement of CaMKII-CREB cascade in n-CRD rat model.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Gordura Intra-Abdominal/fisiopatologia , Núcleo Supraóptico/metabolismo , Animais , Animais Recém-Nascidos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Hiperalgesia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Hipersensibilidade , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Neuralgia/metabolismo , Sistema Nervoso Periférico , Canais de Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Dor Visceral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...